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Abstract: Recently, Savaré-Toscani proved that the Rényi entropy power of general probability
densities solving the p-nonlinear heat equation in Rn is a concave function of time under certain
conditions of three parameters n, p, µ, which extends Costa’s concavity inequality for Shannon’s
entropy power to the Rényi entropy power. In this paper, we give a condition Φ(n, p, µ) of n, p, µ

under which the concavity of the Rényi entropy power is valid. The condition Φ(n, p, µ) contains
Savaré-Toscani’s condition as a special case and much more cases. Precisely, the points (n, p, µ)

satisfying Savaré-Toscani’s condition consist of a two-dimensional subset of R3, and the points
satisfying the condition Φ(n, p, µ) consist a three-dimensional subset of R3. Furthermore, Φ(n, p, µ)

gives the necessary and sufficient condition in a certain sense. Finally, the conditions are obtained
with a systematic approach.

Keywords: Rényi entropy; entropy power inequality; nonlinear heat equation

1. Introduction

In 1948, Claude Elwood Shannon [1] first introduced his mathematical theory of
information. In particular, he presented the concept of entropy as a measure for information.
On this foundation, Alfréd Rényi [2] then built one of his contributions in 1961. At the
center, he introduced a new notion of entropy that included that of Shannon as a special
case, and this is called Rényi entropy.

The p-th Rényi entropy [3,4] of a probability density function f : Rn → R is defined as

Hp( f ) :=
1

1− p
log

∫
Rn

f p(x)dx, (1)

for 0 < p < +∞, p 6= 1. The p-th Rényi entropy power is given by

Np( f ) := exp(
µ

n
Hp( f )), (2)

where µ is a real-valued parameter. The Rényi entropy for p = 1 is defined as the limit of
Hp( f ) as p→ 1. It follows from definition (1) that

H1( f ) = lim
p→1

Hp( f ) = −
∫
Rn

f (x)log f (x)dx,

which is Shannon’s entropy. Thus, the Rényi entropy power of index p = 1, µ = 2, given
by (2). coincides with Shannon’s entropy power

N1( f ) := exp(
2
n

H1( f )). (3)
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Shannon’s entropy power inequality (EPI) is one of the most important information
inequalities [1], which has many proofs, generalizations, and applications [5–13]. In
particular, Costa presented a stronger version of the EPI in his seminal paper [14].

Let Xt , X + Nn(0, tI) be the n-dimensional random vector introduced by
Costa [14–17] and u(xt) the probability density of Xt, which solves the heat equation in
the whole space Rn,

∂

∂t
u(xt) = ∆u(xt). (4)

Costa’s differential entropy is defined to be

H(u(xt)) = −
∫
Rn

u(xt) log u(xt)dxt. (5)

Related to EPI, Costa [14] proved that the Shannon entropy power N(u) = 1
2πe e(2/n)H(u) is a

concave function in t; that is, (d/dt)N(u) ≥ 0 and (d2/d2t)N(u) ≤ 0. Several new proofs
and generalizations for Costa’s EPI were given in [18–21].

Savaré-Toscani [22] proved that the concavity of entropy power is a property which is not
restricted to the Shannon entropy power (3) in connection with the heat Equation (4), but it
holds for the p-th Rényi entropy power (2). They put it in connection with the solution to
the nonlinear heat equation

∂

∂t
u(xt) = ∆u(xt)

p (6)

posed in the whole space Rn and p ∈ R>0 and show that d
dt

Np(u) ≥ 0 and d2

d2
t
Np(u) ≤ 0

hold if n, p, µ satisfy certain conditions.
In this paper, we give a generalization for the concavity of the p-th Rényi entropy

power (CREP). Precisely, we give a propositional logic formula Φ(n, p, µ) such that if
n ∈ N, p, µ ∈ R satisfy this formula, then the CREP holds. The condition Φ(n, p, µ) extends
the parameter range of the CREP given by Savaré-Toscani [22] and contains many more
cases. Precisely, the points (n, p, µ) satisfying the condition given in [22] consist of a two-
dimensional subset of R3 and the points satisfying the condition Φ(n, p, µ) consist of a
three-dimensional subset of R3. Furthermore, Φ(n, p, µ) gives the necessary and sufficient
condition for CREP to be valid in a certain sense.

The formula Φ is obtained using a systematic procedure which can be considered
as a parametric version of that given in [15–17,23], where parameters n, p, µ exist in the
formulas. The procedure reduces the proof of the CREP to check the semi-positiveness of a
quadratic form whose coefficients are polynomials in the parameters n, p, µ. In principle,
a necessary and sufficient condition for the parameters to satisfy this property can be
computed with the quantifier elimination [24]. In this paper, the problem is in a special
form and an explicit proof is given.

The rest of this paper is organized as follows. In Section 2, we give the proof procedure
and prove the concavity of entropy powers in the parametric case. In Section 3, we present
the generalized version of CREP using the proof procedure. In Section 4, conclusions
are presented.

2. Proof Procedure

In this section, we present a procedure to prove the CREP. To make the paper concise,
we only give those steps that are needed in this paper.

2.1. Notations

Let xt = [x1,t, x2,t, . . . , xn,t] be a set of variables depending on t and

d(i)xt = dx1,tdx2,t . . . dxi−1,tdxi+1,t . . . dxn,t, i = 1, 2 . . . , n.
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Let [n]0 = {0, 1, . . . , n} and [n] = {1, . . . , n}. To simplify the notations, we use u to denote
u(xt) in the rest of the paper. Denote

Pn = ∪∞
h=0Ph,n, Ph,n = { ∂hu

∂h1 x1,t · · · ∂hn xn,t
: h =

n

∑
i=1

hi, hi ∈ N}

as the set of all derivatives of u with respect to the differential operators ∂
∂xi,t

, i = 1, . . . , n,
R[n, p, µ] as the set of polynomials in parameters n, p, µ, and

R = R[n, p, µ][Pn]

as the set of polynomials in Pn with coefficients in R[n, p, µ]. For v ∈ Ph,n, we say v has
order ord(v) = h. For a monomial ∏r

i=1 vdi
i with vi ∈ Pn, its degree, order, and total order are

defined to be ∑r
i=1 di, maxr

i=1 ord(vi), and ∑r
i=1 di · ord(vi), respectively.

A polynomial inR is called a kth-order differentially homogenous polynomial or simply a
kth-order differential form, if all its monomials have degree k and total order k. LetMk,n be
the set of all monomials which have degree k and total order k. Then, the set of kth-order
differential forms is an R-linear vector space generated by Mk,n, which is denoted as
SpanR(Mk,n). We use Gaussian elimination in SpanR(Mk,n) by treating the monomials as
variables. We always use the lexicographic order for the monomials defined in [15–17].

2.2. Sketch of the Proof

In this section, we give the procedure to prove the CREP. The property d
dt

Np(u) ≥ 0

can be easily proved [22]. We focus on proving d2

d2
t
Np(u) ≤ 0. The procedure consists of

four steps.
In step 1, we reduce the proof of CREP into the proof of an integral inequality, as

shown by the following lemma, the proof of which is given in Section 2.4.

Lemma 1. The proof of d2

d2
t
Np(u) ≤ 0 can be reduced to show

∫
Rn

u3p−6E2,ndxt ≥ 0, (7)

under the condition p ≥ 1− µ
n , where E2,n = ∑n

a=1 ∑n
b=1 E2,n,a,b is a fourth-order differential

form in R[n, p, µ][Va,b] and

Va,b = { ∂hu
∂h1 xa,t∂h2 xb,t

: h ∈ [3]0; a, b ∈ [n]}. (8)

In step 2, we compute the constraints, which are relations satisfied by the probability
density u of Xt. Since E2,n in (7) is a fourth-order differential form, we need only the
constraints which are fourth-order differential forms. A fourth-order differential form R is
called an equational or inequality constraint if∫

Rn
u3p−6Rdxt = 0 or

∫
Rn

u3p−6Rdxt ≥ 0. (9)

The method to compute the constraints is given in Section 2.3. Suppose that the equational
and inequality constraints are respectively

CE = {Ri, | i = 1, . . . , N1}, (10)

CI = {Ii, | i = 1, . . . , N2}. (11)
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In step 3, we find a propositional formula Φ(n, p, µ) such that when n ∈ N and
p, µ ∈ R satisfy Φ,

∃cj, ei ∈ R, s.t. E2,n −
N1

∑
i=1

eiRi −
N2

∑
j=1

cj Ij = S ≥ 0 and cj ≥ 0, j = 1, . . . , N2 (12)

where S is a sum of squares (SOS). Details of this step and the formula Φ(n, p, µ) are given
in Section 3.

To summarize the proof procedure, we have

Theorem 1. The CREP is true if Φ(n, p, µ) is valid.

Proof. By Lemma 1, we have the following proof for CREP:∫
R

u3p−6E2,ndxt

(12)
=
∫
R

u3p−6(
N1

∑
i=1

eiRi +
N2

∑
j=1

cj Ij + S)dxt

S1
=
∫
R

u3p−6(
N2

∑
j=1

cj Ij + S)dxt

S2
≥
∫
R

u3p−6Sdxt
S3
≥ 0.

(13)

Equality S1 is true, because Ri are equational constraints. Inequality S2 is true, because Ij
are inequality constraints. Inequality S3 is true, because S is an SOS and hence S ≥ 0 under
the condition Φ(n, p, µ).

2.3. The Equational Constraints

In this section, we show how to find the second-order equational constraints. A
second-order equational constraint is a fourth-order differential form in R[n, p, µ][P2,n] such
that

∫
Rn u3p−6R dxt = 0. We need the following property.

Property 1. Let a, r, mi, ki ∈ N>0 and u(mi) be an mith-order derivative of u. If u(xt) is a smooth,
strictly positive and rapidly decaying probability density, then

∫ ∞

−∞
. . .
∫ ∞

−∞
u3p−2

[
r

∏
i=1

[u(mi)]ki

uki

]∣∣∣∣∣
∞

xa,t=−∞

d(a)xt = 0, (14)

with ∑r
i=1 kimi = 4, ∑r

i=1 ki = 4.

When p ≥ 2, Property 1 follows from [25]. While 0 < p < 2, p 6= 1, we make the
assumption that u(xt) also satisfies Property 1.

Using Property 1, we can compute 28 second-order equational constraints using the
method given in [15–17]:

C2,n = {Ri,a,b : i = 1, . . . , 28} ⊂ R[n, p, µ][Va,b], (15)

where Ri,a,b can be found in the Appendix A. Note that a, b are variables taking values
in [n].
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We use an example to show how to obtain these constraints. Starting from a monomial
u ∂2u

∂2xa,t
( ∂u

∂xa,t
)2 with degree 4 and total order 4, using integral by parts, we have

∫
u3p−6u ∂2u

∂2xa,t
( ∂u

∂xa,t
)2dxt

=
∫ ∞
−∞ . . .

∫ ∞
−∞[u3p−5 ∂u

∂xa,t
( ∂u

∂xa,t
)2]
∣∣∣∞
xa,t=−∞

d(a)xt

−
∫

∂u
∂xa,t

[ ∂
∂xa,t

(u3p−5( ∂u
∂xa,t

)2)]dxt
(14)
= −

∫
∂u

∂xa,t
[ ∂

∂xa,t
(u3p−5( ∂u

∂xa,t
)2)]dxt.

(16)

Then, ∫
u3p−6u

∂2u
∂2xa,t

(
∂u

∂xa,t
)2 +

∂u
∂xa,t

[
∂

∂xa,t
(u3p−5(

∂u
∂xa,t

)2)]dxt

=
∫

u3p−6[3p(
∂u

∂xa,t
)4 + 3u

∂2u
∂2xa,t

(
∂u

∂xa,t
)2 − 5(

∂u
∂xa,t

)4]dxt = 0.
(17)

We then obtain a 2th-order constraint: R1,a,b = 3p( ∂u
∂xa,t

)4 + 3u ∂2u
∂2xa,t

( ∂u
∂xa,t

)2 − 5( ∂u
∂xa,t

)4. The
other 27 constraints in C2,n are obtained in the same way.

2.4. Proof of Lemma 1

We first prove several lemmas.

Lemma 2.
dHp(u)

dt
= p

1−p

∫
up−1∆updxt∫

updxt
, (18)

d2Hp(u)

d2t
=

p
1− p

∂
∂t (
∫

up−1 ∂u
∂t dxt)

∫
updxt − p(

∫
up−1 ∂u

∂t dxt)2

(
∫

updxt)2 . (19)

Proof. By the definition of p-Rényi entropy (1), we have

dHp(u)
dt

=
p

1− p

∫
up−1 ∂u

∂t dxt∫
updxt

=
p

1− p

∫
up−1∆updx∫

updx
,

d2Hp(u)

d2t
=

p
1− p

∂
∂t (
∫

up−1 ∂u
∂t dxt)

∫
updxt −

∫
up−1 ∂u

∂t dxt
∂
∂t (
∫

updxt)

(
∫

updxt)2

=
p

1− p

∂
∂t (
∫

up−1 ∂u
∂t dxt)

∫
updxt −

∫
up−1 ∂u

∂t dxt
∫

pup−1 ∂u
∂t dxt

(
∫

updxt)2

=
p

1− p

∂
∂t (
∫

up−1 ∂u
∂t dxt)

∫
updxt − p(

∫
up−1 ∂u

∂t dxt)2

(
∫

updxt)2 .

Lemma 3. We have ∫
up−1∆updxt =

∫
∆up−1updxt. (20)

Proof. Integrating by parts [22], we have∫
up−1∆updxt = −

∫
∇up−1∇updxt =

∫
∆up−1updxt.

By Cauchy–Schwarz inequality, we have
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Lemma 4.

(
∫

∆up−1updxt)
2 ≤

∫
updxt

∫
(∆up−1)2updxt. (21)

Then, we obtain

d2

d2
t
Np(u) = µ

n
d2

Hp(u)

d2
t

e
µ
n Hp(u) +

(
µ
n

dHp(u)
dt

)2
e

µ
n Hp(u)

= µ
n e

µ
n Hp(u) I2,n,

(22)

where I2,n =
d2

Hp(u)

d2
t

+
µ

n

(
dHp(u)

dt

)2

. So, by (18), (19), we have

I2,n =
p

1− p

∂
∂t (
∫

up−1 ∂u
∂t dxt)

∫
updxt − p(

∫
up−1 ∂u

∂t dxt)2

(
∫

updxt)2

+
µ

n
(

p
1− p

∫
up−1∆updxt∫

updxt
)2

=
µp2

n(1− p)2
(
∫

up−1∆updxt)2

(
∫

updxt)2 +
p

1− p

∂
∂t (
∫

up−1 ∂u
∂t dxt)

∫
updxt

(
∫

updxt)2

− p2

1− p
(
∫

up−1∆updxt)2

(
∫

updxt)2

= (
µp2

n(1− p)2 −
p2

1− p
)
(
∫

up−1∆updxt)2

(
∫

updxt)2

+
p

1− p

∂
∂t (
∫

up−1 ∂u
∂t dxt)

∫
updxt

(
∫

updxt)2

(20)
=

(µ− n(1− p))p2

n(1− p)2
(
∫

∆up−1updxt)2

(
∫

updxt)2 +
p

1− p

∂
∂t (
∫

up−1 ∂u
∂t dxt)

∫
updxt

(
∫

updxt)2

(i)
≤ (µ− n(1− p))p2

n(1− p)2

∫
updxt

∫
(∆up−1)2updxt

(
∫

updxt)2

+
p

1− p

∂
∂t (
∫

up−1 ∂u
∂t dxt)

∫
updxt

(
∫

updxt)2

=
1∫

updxt

(
(µ− n(1− p))p2

n(1− p)2

∫
(∆up−1)2updxt +

p
1− p

∂

∂t
(
∫

up−1 ∂u
∂t

dxt)

)
=

1∫
updxt

∫ (
(µ− n(1− p))p2

n(1− p)2 (∆up−1)2up +
p

1− p
∂

∂t
(up−1 ∂u

∂t
)

)
dxt

=
1∫

updxt

∫
F2,ndxt,

(23)

where F2,n = (µ−n(1−p))p2

n(1−p)2 (∆up−1)2up + p
1−p

∂
∂t (u

p−1 ∂u
∂t ).

Remark 1. In (23), the step (i) is according to (21), and (µ−n(1−p))p2

n(1−p)2 ≥ 0 should be satisfied,

which is true under condition p ≥ 1− µ
n . When µ := 2 + n(p− 1), (µ−n(1−p))p2

n(1−p)2 ≥ 0 yields

p ≥ 1− 1
n . Savaré-Toscani [22] also used the inequality (21), but ignore the nonnegativity of

the coefficient (µ−n(1−p))p2

n(1−p)2 ; thus, the parameter’s range p > 1− 2
n in [22] should be corrected to

p ≥ 1− 1
n .
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Furthermore, we have

F2,n =
(µ− n(1− p))p2

n(1− p)2 up
n

∑
a=1

n

∑
b=1

[(
∂2

∂2xa,t
up−1)(

∂2

∂2xb,t
up−1)]

+
p

1− p
∂

∂t
[up−1

n

∑
a=1

(
∂2

∂2xa,t
up)]

=
(µ− n(1− p))p2

n(1− p)2 up
n

∑
a=1

n

∑
b=1

[(
∂2

∂2xa,t
up−1)(

∂2

∂2xb,t
up−1)]

+
p

1− p

n

∑
a=1

[(p− 1)up−2(
∂2

∂2xa,t
up)

∂u
∂t

+ pup−1 ∂2

∂2xa,t
(up−1 ∂u

∂t
)]

=
(µ− n(1− p))p2

n(1− p)2 up
n

∑
a=1

n

∑
b=1

[(
∂2

∂2xa,t
up−1)(

∂2

∂2xb,t
up−1)]

+
p

1− p

n

∑
a=1

[
(p− 1)up−2(

∂2

∂2xa,t
up)

n

∑
b=1

(
∂2

∂2xb,t
up) + pup−1 ∂2

∂2xa,t
(up−1

n

∑
b=1

(
∂2

∂2xb,t
up))

]

=
(µ− n(1− p))p2

n(1− p)2 up
n

∑
a=1

n

∑
b=1

[(
∂2

∂2xa,t
up−1)(

∂2

∂2xb,t
up−1)]

+
p

1− p

n

∑
a=1

n

∑
b=1

[
(p− 1)up−2(

∂2

∂2xa,t
up)(

∂2

∂2xb,t
up)

+pup−1 ∂2

∂2xa,t

(
up−1(

∂2

∂2xb,t
up)

)]
=

n

∑
a=1

n

∑
b=1
Ta,b,

(24)
where

Ta,b =
(µ− n(1− p))p2

n(1− p)2 up[(
∂2

∂2xa,t
up−1)(

∂2

∂2xb,t
up−1)]

+
p

1− p

[
(p− 1)up−2(

∂2

∂2xa,t
up)(

∂2

∂2xb,t
up)

+pup−1 ∂2

∂2xa,t

(
up−1(

∂2

∂2xb,t
up)

)]
.

(25)

For convenience, introduce the notation ui,j := ∂i+ju
∂ixa,t∂jxb,t

. Then, by calculating the

differentiation formulas in (25) and substituting ∂i+ju
∂ixa,t∂jxb,t

= ui,j, we have Ta,b = − u3p−6 p2

(p−1)n Ta,b,

where

Ta,b = 4np4u2
0,1u2

1,0 + 2np3uu2
0,1u2,0 + 8np3uu0,1u1,0u1,1

+ 4np3uu0,2u2
1,0 − 15np3u2

0,1u2
1,0 − µp3u2

0,1u2
1,0 + 2np2u2u0,1u2,1

+ 2np2u2u0,2u2,0 + 4np2u2u1,0u1,2 + 2np2u2u2
1,1 − 3np2uu2

0,1u2,0

− 20np2uu0,1u1,0u1,1 − 8np2uu0,2u2
1,0 − µp2uu2

0,1u2,0 − µp2uu0,2u2
1,0

+ 16np2u2
0,1u2

1,0 + 5µp2u2
0,1u2

1,0 + npu3u2,2 − 2npu2u0,1u2,1

− npu2u0,2u2,0 − 4npu2u1,0u1,2 − 2npu2u2
1,1 − µpu2u0,2u2,0

− npuu2
0,1u2,0 + 12npuu0,1u1,0u1,1 + 2npuu0,2u2

1,0 + 3µpuu2
0,1u2,0

+ 3µpuu0,2u2
1,0 − npu2

0,1u2
1,0 − 8µpu2

0,1u2
1,0 − nu2u0,2u2,0

+ µu2u0,2u2,0 + 2nuu2
0,1u2,0 + 2nuu0,2u2

1,0 − 2µuu2
0,1u2,0

− 2µuu0,2u2
1,0 − 4nu2

0,1u2
1,0 + 4µu2

0,1u2
1,0,

(26)
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which is a fourth-order differential form.
From (22)–(25), we have

d2

d2t
Np(u) ≤ −

p2µ

n2 e
µ
n Hp(u) 1∫

updxt

∫
u3p−6E2,ndxt, (27)

where E2,n =
n
∑

a=1

n
∑

b=1

Ta,b
p−1 and Ta,b is defined in (26). Then, the problem d2

d2
t
Np(u) ≤ 0 can

be transformed to
∫

u3p−6E2,ndxt ≥ 0. Thus, Lemma 1 is proved.

3. A Generalized Version of CREP

In this section, we prove a generalized CREP using the procedure given in Section 2.

Theorem 2. Let u(xt) be a probability density in Rn solving (6) and satisfying (14). Then, we give
a propositional formula Φ(n, p, µ) such that the p-th Rényi entropy power defined in (2) satisfies

d2

d2t
Np(xt) ≤ 0, (28)

under the condition Φ(n, p, µ), that is Np(xt) is concave under Φ(n, p, µ).

The proof of the above theorem consists of three steps, which are given in the following
three subsections.

3.1. Reduce to a Finite Problem

We first give an inequality constraint. Denote |∇2 f |2 = ∑i,j(
∂2 f

∂xi∂xj
)2. Then, based on

the trace inequality |∇2 f |2 ≥ 1
n (∆ f )2, we give an inequality constraint:

I1 =
up

u3p−6

[
|∇2up−1|2 − 1

n
(∆up−1)2

]
=

n

∑
a=1

n

∑
b=1

I1,a,b ≥ 0, (29)

where I1,a,b = u6−2p
[
( ∂2up−1

∂xa,t∂xb,t
)2 − 1

n
∂2up−1

∂2xa,t

∂2up−1

∂2xb,t

]
.

From (27) and (29), in order for (28) to be true, it suffices to solve

Problem 1. Find a formula Φ(n, p, µ) such that

E2,n ≥ Ẽ2,n = E2,n + c1 I1 =
n
∑

a=1

n
∑

b=1
( 1

p−1 Ta,b + c1 I1,a,b) ≥ 0,

under the conditions c1 ≤ 0, p ≥ 1− µ
n , Ri,a,b = 0, i = 1, . . . , 28 given in (15).

Since
n
∑

a=1

n
∑

b=1
Ta,b =

n
∑

a=1

n
∑

b=1
Tb,a and I1,a,b = R(I)

1,b,a, we have

Ẽ2,n =
1
2

n

∑
a=1

n

∑
b=1

[
1

p− 1
(Ta,b + Tb,a) + c1(I1,a,b + I1,b,a)] =

1
2

n

∑
a=1

n

∑
b=1

La,b, (30)

where La,b = 1
p−1 (Ta,b + Tb,a) + c1(I1,a,b + I1,b,a).

From (30), in order to solve Problem 1, it suffices to solve

Problem 2. Find a formula Φ(n, p, µ) such that La,b ≥ 0 under the conditions c1 ≤ 0, p ≥ 1− µ
n ,

and Ri,a,b = 0, i = 1, . . . , 28.
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3.2. Simplify the Problem with the Equational Constraints

In this section, we simplify La,b in Problem 2 with the equational constraints C2,n
in (15). Note that the subscripts a and b are fixed and are treated as symbols.

Our goal is to reduce La,b into a quadratic form in certain new variables. The new
variables are all the monomials in R[Va,b] with degree 2 and total order 2:

m1 = uu0,2, m2 = uu1,1, m3 = uu2,0,

m4 = u2
0,1, m5 = u1,0u0,1, m6 = u2

1,0,

where Va,b is defined in (8).
We simplify the constraints in (15) as follows. A quadratic monomial in mi is called a

quadratic monomial. Write monomials in C2,n = {Ri, i = 1, . . . , N1} as quadratic monomials
if possible. Performing Gaussian elimination to C2,n by treating the monomials as variables,
and according to a monomial order such that a quadratic monomial is less than a non-
quadratic monomial, we obtain

C̃2,n = C2,n,1 ∪ C2,n,2,

where C2,n,1 is the set of quadratic forms in mi, C2,n,2 is the set of non-quadratic forms,
and SpanR(C2,n) = SpanR(C̃2,n). We obtain C2,n,1 = {R̂i, i = 1, . . . , 9} and C2,n,2 = {R̃i, i =
1, . . . , 13}, where

R̂1 = 2m1m5 +
2(3p−5)

3 m4m5, R̂2 = m2m6 +
3p−5

3 m5m6,
R̂3 = −6m3m5 + 2(5− 3p)m5m6, R̂4 = (3p− 5)m2

4 + 3m1m4,
R̂5 = (3p− 5)m2

6 + 3m3m6, R̂6 = (3p− 5)m4m5 + 3m2m4,
R̂7 = (3p− 5)m2

5 + 2m2m5 + m3m4,

R̂8 = m1m3 −m2
2 +

9p−12
2 m3m4 +

9p2−27p+20
2 m2

5,
R̂9 = m1m6 −m3m4.∗

R̃1 = u3u0,4 + (3− 3p)m2
1 + (9p3 − 36p2 + 47p− 20)m2

4,
R̃2 = u3u1,3 + (3− 3p)m1m2 + (9p3 − 36p2 + 47p− 20)m4m5,
R̃3 = u3u3,1 + (3− 3p)m2m3 + (−9p2 + 21p− 12)m3m5,
R̃4 = u3u4,0 + (3− 3p)m2

3 + (9p3 − 36p2 + 47p− 20)m2
6,

R̃5 = u2u0,1u0,3 + m2
1 +

−9p2+27p−20
3 m2

4,

R̃6 = u2u0,1u1,2 + m1m2 +
−9p2+27p−20

3 m4m5,

R̃7 = u2u0,1u3,0 + m2m3 +
−9p2+27p−20

3 m5m6,

R̃8 = u2u1,0u0,3 + m1m2 +
−9p2+27p−20

3 m4m5,

R̃9 = u2u1,0u2,1 + m2m3 +
−9p2+27p−20

3 m5m6,

R̃10 = u2u1,0u3,0 + m2
3 +

−9p2+27p−20
3 m2

6,

R̃11 = u3u2,2 + (3− 3p)m2
2 +

9p2−21p+12
2 m3m4 +

27p3−108p2+141p−60
2 m2

5,

R̃12 = u2u0,1u2,1 + m2
2 +

4−3p
2 m3m4 +

−9p2+27p−20
2 m2

5,

R̃13 = u2u1,0u1,2 + m2
2 +

4−3p
2 m3m4 +

−9p2+27p−20
2 m2

5.



Entropy 2021, 23, 1593 10 of 18

We now simplify La,b using C2,n,1 and C2,n,2. Eliminating the non-quadratic monomials
in La,b using C2,n,2, and performing further reduction by C2,n,1, we have

L̂a,b = La,b − 2(p3c1 + 4np2 − 4p2c1 − 6np + 5pc1 − 2c1)R̂7

− 2
n
(2n2 p− p2c1 + n2 − nµ + 2pc1 − c1)R̂8

− 1
n
(6n2 p2 − 2p3c1 − 5n2 p− 2npµ + 8p2c1 − 4n2 + 4nµ− 10pc1 + 4c1)R̂9

− 2np
p− 1

R̃11 − 6npR̃12 − 6npR̃13

= (2np + 2n− 2µ)m2
2 + (5np− 5np2 + 5pµ + 4n− 4µ)m3m4

+ (18np2 − 7np3 + 7p2µ− 3np− 19pµ− 12n + 12µ)m2
5

+
c1

n
[(2n− 2)(p2 − 2p + 1)m2

2 + (4n− 2np + 5p− 4)(p2 − 2p + 1)m3m4

+ (14np− 4np2 + 7p2 − 12n− 19p + 12)(p2 − 2p + 1)m2
5].

(31)

In order for L̂a,b ≥ 0 to be true, we need to eliminate the monomial m3m4 from L̂a,b,
which can be done with R̂7 as follows.

L̂a,b + p7R̂7 = A1m2
2 + A2m2m5 + A3m2

5, (32)

where

p7 = (2np3c1 + 5n2 p2 − 8np2c1 − 5p3c1 − 5n2 p− 5npµ + 10npc1

+ 14p2c1 − 4n2 + 4nµ− 4nc1 − 13pc1 + 4c1)/n,

A1 = −2c1 p2/n + 4c1 p/n + 2np + 2c1 + 2c1 p2 − 4c1 p− 2c1/n− 2µ + 2n,

A2 = 4c1 p3 − 16c1 p2 − 10c1 p3/n− 10pµ + 20c1 p + 28c1 p2/n− 26c1 p/n

+ 10np2 − 10np + 8µ− 8c1 + 8c1/n− 8n,

A3 = −8µ + 8n + 26c1 p2 − 24c1 p− 8c1/n− 12c1 p3 + 2c1 p4 + 8c1 − 52c1 p2/n

+ 34c1 p/n + 34c1 p3/n− 8c1 p4/n + 18pµ + 8np3 − 22np2 − 8p2µ + 10np.

3.3. Compute Φ(n, p, µ)

From (32), in order to solve Problem 2, it suffices to solve

Problem 3. Find a propositional formula Φ(n, p, µ) such that

Φ(n, p, µ)⇔ ∃c1(c1 ≤ 0∧ p ≥ 1− µ

n
∧ A1m2

2 + A2m2m5 + A3m2
5 ≥ 0). (33)

In principle, Problem 3 can be solved with the quantifier elimination [24]. In this
paper, the problem is special, and an explicit proof is given.

By the knowledge of linear algebra, A1m2
2 + A2m2m5 + A3m2

5 ≥ 0 is equivalent to
∆1 = A1 = 2

n s1 ≥ 0, ∆2 = A3 = 2
n s2 ≥ 0, ∆3 = A1 A3 − 1

4 A2
2 = p

n2 s3 ≥ 0, where

s1 = (p− 1)2(n− 1)c1 + n2(p + 1)− nµ,

s2 = (p− 1)2(n(p− 2)2 − 4p2 + 9p− 4)c1

+ n2(4p3 − 11p2 + 5p + 4)− (4p2 − 9p + 4)nµ,

s3 = (4− 9p)n2(µ− µ3)(µ− µ4),

and µ3 and µ4 are defined in (37). Furthermore, p 6= 4
9 is assumed in µ4. Thus, the

following lemma is proved.



Entropy 2021, 23, 1593 11 of 18

Lemma 5. We have

Φ(n, p, µ)⇔ ∃c1(c1 ≤ 0, s1 ≥ 0, s2 ≥ 0, s3 ≥ 0, p ≥ 1− µ/n). (34)

We present an explicit formula for Φ in (34). First, we introduce the following parame-
ters.

n1 = 9−
√

17
8 , n2 = 9+

√
17

8 , n3 = (
√

17 + 1)/2,

θ1 = − 2n
(p−1)2 , θ2 = 2n2 p(9p−13)

(p−1)2(4n+9p−4) , θ3 = (
√

17− 9)n,

θ4 = n2 p−n2−nµ

(p−1)2 , θ5 = n2(9p2−13p−4)−n(9p−4)µ
(p−1)2(4n+9p−4) , θ6 = −4n(

√
17−1)µ+8n2
√

17+1
,

θ7 = n(1− p), θ8 = 5n/9, θ9 = − 162n
25 ,

θ10 = 64n√
17−9

, θ11 = 8(9
√

17+23)n2

−32n−49+9
√

17
, θ12 = − 16(11

√
17+47)nµ+152n2

26
√

17n+73
√

17+118n+305
,

θ13 = − 4n(µ
√

17+2n+µ)√
17−1

, θ14 = − 8n(22µ
√

17−19n−94µ)

26
√

17n+73
√

17−118n−305
, θ15 = − 9

5 n2 − 81
25 µn,

θ16 = (
√

17− 1)n/8, φ1 , p ≥ 1− 1
n , φ2 , µ = 2 + n(p− 1),

φ3 , p > 1− 1
n .

(35)

We define Φ in (34) using Table 1, where ∗means ∅. Define T(i, j) to be the formula
in the i-th row and the j-th column in Table 1. Then, we denote

T(i, j) , T(i, 1) ∧ T(i, j) for i = 1, . . . , 8, j = 2, 3, 4. (36)

For example, T(1, 2) is p > n2 ∧ θ4 > θ1 ∧ θ5 ≤ 0, which means that if p, n, µ satisfy T(1, 2),
then there exists a c1 ≤ 0 such that (33) is true and the CREP is valid. T(1, 3) = ∅, which
means that there exist no values for p, n, µ such that (33), and the CREP is true in this case.

We now give the main result of the paper, which implies Theorem 2. The proof for the
theorem can be found in Section 3.5.

Table 1. The description for Φ(n, p, µ) in (34).

p > n2 θ4 > θ1 ∧ θ5 ≤ 0 * φ1 ∧ φ2
p = n2 θ6 > θ3 ∧ θ12 ≤ 0 * φ1 ∧ φ2

13
9 < p < n2 θ4 > θ1 ∧ θ5 ≤ 0 * φ1 ∧ φ2

n1 < p ≤ 13
9 , p 6= 1 φ3 ∧ θ4 > θ1 ∧ θ5 ≤ θ2 φ3 ∧ θ7 ≤ µ ∧ θ4 > θ2 φ1 ∧ φ2

p = n1 n < n3 ∧ θ13 > θ10 ∧ θ14 ≤ θ11 n < n3 ∧ θ13 > θ11 ∧ µ ≥ θ16 φ1 ∧ φ2
4
9 < p < n1 φ3 ∧ θ4 > θ1 ∧ θ5 ≤ θ2 φ3 ∧ θ7 ≤ µ ∧ θ4 > θ2 φ1 ∧ φ2

p = 4
9 n = 1∧ θ15 > θ9 ∧ µ ≥ θ8 * n = 1∧−p ≤ µ− 1 ≤ p

0 < p < 4
9 n = 1∧ θ7 ≤ µ ∧ θ4 > θ1 n = 1∧ θ5 < θ1 ∧ µ ≥ θ7 n = 1∧−p ≤ µ− 1 ≤ p

Theorem 3. The sufficient and necessary condition for Problem 3— that is, (33) must be true—is

Φ(n, p, µ) = ∨8
i=1 ∨

4
j=2 T(i, j),

where T(i, j) is defined in (36) and ∨ means disjunction.

3.4. Compare with Existing Results

We show that our result includes the result proved in [22] and more essential results.
In [22], the CREP was proved under the conditions µ = 2 + n(p− 1) and p ≥ 1− 1

n .
Obviously, the result proved in [22] is a special case of T(i, 4), i = 1, . . . , 8 in Table 1.

We can also prove the result in [22] directly as follows. Set µ = 2 + n(p − 1) and
c1 = − 2n

(p−1)2 ≤ 0 in (31), we obtain L̂a,b = 0. In addition, the condition p ≥ 1− µ
n implies

p ≥ 1− 1
n . So, when µ = 2 + n(p− 1) and p ≥ 1− 1

n , the CREP is proved based on our
proof procedure.

We can use the SDP code in ([15], Appendix B) to verify the result in Table 1 for given
values of µ, p, n. For instance, for µ = 2, p = 11

5 , n = 2, the condition p ≥ 1− µ
n is satisfied
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naturally. With the SDP code in [15], we obtain L̂a,b +
172
25 R̂7 = (2

√
2m2 +

344
100
√

2
m5)

2 +
22

625 m2
5 ≥ 0 with c1 = − 5

9 . Thus, the CREP is proved when µ = 2, p = 11
5 , n = 2. This case

[µ = 2, p = 11
5 , n = 2, c1 = − 5

9 ] is included in T(1, 2) in Table 1. Note that µ = 2 + n(p− 1)
is not satisfied for these parameters, and thus our condition Φ(n, p, µ) is strictly larger
than those given in [22]. More precisely, the points (n, p, µ) satisfying the conditions
µ = 2 + n(p− 1), p ≥ 1− 1

n given in [22] consist of a two-dimensional subset of R3, while
the points satisfying the condition Φ(n, p, µ) consist of a three-dimensional subset of R3, as
shown by the following result.

Property 2. The points satisfying the condition Φ(n, p, µ) consist of a three-dimensional subset of
R3.

Proof. We show that the points satisfying T(1, 2) consist of a three-dimensional subset of
R3.

From Table 1, we have T(1, 2) = [F1 > 0 ∧ F2 > 0 ∧ F3 ≤ 0], where F1 = p− 9+
√

17
8 ,

F2 = n2 p−n2−nµ

(p−1)2 + 2n
(p−1)2 , F3 = n2(9p2−13p−4)−n(9p−4)µ

(p−1)2(4n+9p−4) . Under the condition F1 > 0, we
can reduce the inequality F2 > 0 to the form µ < 2 + n(p− 1) and reduce the inequality

F3 ≤ 0 to the form µ ≥ n(9p2−13p−4)
9p−4 . Thus, T(1, 2) = [p > 9+

√
17

8 ∧ n(9p2−13p−4)
9p−4 ≤ µ <

n(p − 1) + 2]. Since n(p − 1) + 2− n(9p2−13p−4)
9p−4 = 8n+2(9p−4)

9p−4 > 0 under the condition

p > 9+
√

17
8 , T(1, 2) defines a three-dimensional subset of R3.

3.5. Proof of Theorem 3

In order to make the proof precise, we introduce the following parameters:

µ1 = ((p− 1)2(n− 1)c1 + n2(p + 1))/n,

µ2 = ((p− 1)2(n(p− 2)2 − 4p2 + 9p− 4)c1 + n2(4p3 − 11p2 + 5p

+ 4))/(n(4p2 − 9p + 4))

µ3 = (n2 p− p2c1 − n2 + 2pc1 − c1)/n,

µ4 = (9n2 p2 − 4np2c1 − 9p3c1 − 13n2 p + 8npc1 + 22p2c1 − 4n2 − 4nc1 − 17pc1

+ 4c1)/(n(9p− 4)),

µ5 = −(nc1
√

17− c1
√

17 + 136n2 + 17nc1 − 17c1)/(4n(
√

17− 17)),

µ6 = −(c1
√

17− 8n2 + c1)/(4n(
√

17− 1)),

µ7 = −(26nc1
√

17 + 73c1
√

17 + 152n2 + 118nc1 + 305c1)/(16n(11
√

17 + 47)),

µ8 = −(nc1
√

17− c1
√

17− 136n2 − 17nc1 + 17c1)/(4n(
√

17 + 17)),

µ9 = −(c1
√

17 + 8n2 − c1)/(4n(
√

17 + 1)),

µ10 = −(26nc1
√

17 + 73c1
√

17− 152n2 − 118nc1 − 305c1)/(16n(11
√

17− 47)),

µ11 = (117n2 + 25nc1 − 25c1)/(81n),

µ12 = (7218n2 + 1225nc1 − 400c1)/(1296n),

µ13 = −(5(9n2 + 5c1))/(81n),

η1 =
2n2

p− 1
, η2 = − 16n2

√
17− 1

, η3 = −18
5

n2.

(37)

We first treat the three inequalities s1 ≥ 0, s2 ≥ 0, s3 ≥ 0. Firstly, s1 ≥ 0 is equivalent
to µ ≤ µ1. Secondly, since the roots of 4p2 − 9p + 4 = 0 are n1 and n2, we have s2 ≥ 0⇔
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µ ≤ µ2 if p < n1 or p > n2; and s2 ≥ 0 ⇔ µ ≥ µ2 if n1 < p < n2. In order to analyze
s3 ≥ 0, we first compute

µ3 − µ4 =
4((p− 1)2c1 + 2n)

9p− 4
. (38)

Therefore, s3 ≥ 0 can be divided into four cases: s3 ≥ 0 ⇔ µ4 ≤ µ ≤ µ3 if p > 4
9 and

θ1 < c1; s3 ≥ 0 ⇔ µ3 ≤ µ ≤ µ4 if p > 4
9 and c1 < θ1; s3 ≥ 0 ⇔ µ ≥ µ3 or µ ≤ µ4 if

p < 4
9 and c1 < θ1; s3 ≥ 0⇔ µ ≥ µ4 or µ ≤ µ3 if p < 4

9 and θ1 < c1. Finally, p ≥ 1− µ
n is

equivalent to µ ≥ θ7.
Based on the above analysis and (34), Φ(n, p, µ) can be divided into six cases:

Φ(n, p, µ) ⇔ max(µ4, θ7) ≤ µ ≤ min(µ1, µ2, µ3), if (p ∈ ( 4
9 , n1) or p > n2)

and θ1 < c1 ≤ 0;
Φ(n, p, µ) ⇔ max(µ2, µ4, θ7) ≤ µ ≤ min(µ1, µ3), if p ∈ (n1, n2)

or θ1 < c1 ≤ 0;
Φ(n, p, µ) ⇔ max(µ3, θ7) ≤ µ ≤ min(µ1, µ2, µ4), if (p ∈ ( 4

9 , n1) or p > n2)
or c1 < θ1;

Φ(n, p, µ) ⇔ max(µ2, µ3, θ7) ≤ µ ≤ min(µ1, µ4), if p ∈ (n1, n2) or c1 < θ1;
Φ(n, p, µ) ⇔ θ7 ≤ µ ≤ min(µ1, µ2, µ4) or max(µ3, θ7) ≤ µ ≤ min(µ1, µ2),

if p < 4
9 or c1 < θ1;

Φ(n, p, µ) ⇔ θ7 ≤ µ ≤ min(µ1, µ2, µ3) or max(µ4, θ7) ≤ µ ≤ min(µ1, µ2),
if p < 4

9 or θ1 < c1 ≤ 0.

(39)

The special cases p = 4
9 , n1, n2, and c = θ1 need to be considered differently.

Below, we give a detailed analysis of the above six cases, which leads to the results in
Table 1. We first have the following formulas:

µ1 − µ3 = (p− 1)2c1 + 2n, (40)

µ1 − µ4 =
9p((p− 1)2c1 + 2n)

9p− 4
, (41)

µ2 − µ3 =
2(p− 2)2((1/2)(p− 1)2c1 + n)

(4p2 − 9p + 4)
, (42)

µ2 − µ4 =
p(3p− 4)2((p− 1)2c1 + 2n)

(4p2 − 9p + 4)(9p− 4)
, (43)

µ4 − θ7 =
−(p− 1)2(4n + 9p− 4)c1 + 2n2 p(9p− 13)

n(9p− 4)
, (44)

µ3 − θ7 =
(p− 1)(2n2 − pc1 + c1)

n
, (45)

θ2 − θ1 =
18n(np− n + 1)(p− 4

9 )

(p− 1)2(4n + 9p− 4)
, (46)

θ1 − η1 = −2n(np− n + 1)
(p− 1)2 , (47)

η1 − θ2 =
8n2(np− n + 1)

(p− 1)2(4n + 9p− 4)
. (48)
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Firstly, we have the following formulas which eliminate c1.

µ ≤ µ3 ⇔ c1 ≤ θ4, µ ≥ µ4 ⇔ c1 ≥ θ5, if p > 4
9 ,

µ ≥ µ4 ⇔ c1 ≤ θ5, if p < 4
9 , µ ≤ µ4 ⇔ c1 ≤ θ5, if p > 4

9 ,
µ ≤ µ4 ⇔ c1 ≥ θ5, if p < 4

9 , µ ≤ µ6 ⇔ c1 ≤ θ6,
µ ≥ µ7 ⇔ c1 ≥ θ12, µ ≤ µ9 ⇔ c1 ≤ θ13,
µ ≥ µ10 ⇔ c1 ≥ θ14, µ ≤ µ13 ⇔ c1 ≤ θ15.

(49)

We divide the proof into several cases, first according to the values of c1 and then
according to the values of n.

Case 1: θ1 < c1 ≤ 0. From (40), we have µ1 > µ3 in this case and from (39), Φ(n, p, µ)
simplifies to three cases:

Φ(n, p, µ)⇔ max(µ4, θ7) ≤ µ ≤ min(µ2, µ3), if p ∈ ( 4
9 , n1) or p > n2;

Φ(n, p, µ)⇔ max(µ2, µ4, θ7) ≤ µ ≤ µ3, if p ∈ (n1, n2);
Φ(n, p, µ)⇔ θ7 ≤ µ ≤ min(µ2, µ3) or max(µ4, θ7) ≤ µ ≤ min(µ1, µ2), if p < 4

9 .
According to the vales of p, we consider seven cases below.
Case 1.1: θ1 < c1 ≤ 0 and p > n2. In this case, from (42) and (44), we have µ2 ≥ µ3

and µ4 > θ7. Hence, Φ(n, p, µ)⇔ µ4 ≤ µ ≤ µ3.
We now eliminate c1 from Φ(n, p, µ)⇔ (p > n2 ∧ θ1 < c1 ≤ 0∧µ4 ≤ µ ≤ µ3). By (49),

µ4 ≤ µ ≤ µ3 is equivalent to θ5 ≤ c1 ≤ θ4. ∃c1(θ5 ≤ c1 ≤ θ4 ∧ θ1 < c1 ≤ 0) is equivalent to
(θ4 > θ1 ∧ θ5 ≤ 0). Therefore, in this case, Φ(n, p, µ) ⇔ (p > n2 ∧ θ4 > θ1 ∧ θ5 ≤ 0), and
T(1, 2) is proved.

Case 1.2: θ1 < c1 ≤ 0 and p = n2. When p = n2, we have θ1 = θ3, s2 = − 1
1024 (7

√
17−

33)(c1
√

17 + 64n + 9c1)n. Then, s2 ≥ 0 ⇔ c1 ≥ θ3. Because θ1 < c1 ≤ 0 and p = n2 > 4
9 ,

we have s3 ≥ 0⇔ µ4 ≤ µ ≤ µ3. By (44), we have µ4 > θ7. When p = n2, we have µ3 = µ6
and µ4 = µ7. Thus Φ(n, p, µ)⇔ (θ3 < c1 ≤ 0, µ7 ≤ µ ≤ µ6).

We now eliminate c1 from Φ(n, p, µ)⇔ (p = n2 ∧ θ3 < c1 ≤ 0∧µ7 ≤ µ ≤ µ6). By (49),
µ7 ≤ µ ≤ µ6 is equivalent to θ12 ≤ c1 ≤ θ6. ∃c1(θ12 ≤ c1 ≤ θ6 ∧ θ3 < c1 ≤ 0) is equivalent
to θ6 > θ3 and θ12 ≤ 0. Therefore, in this case, Φ(n, p, µ) ⇔ (p = n2 ∧ θ6 > θ3 ∧ θ12 ≤ 0),
and T(2, 2) is proved.

Case 1.3: θ1 < c1 ≤ 0 and p ∈ (n1, n2), p 6= 1. This case is divided into two sub-cases.
Case 1.3.1: θ1 < c1 ≤ 0 and p ∈ ( 13

9 , n2). By (43) and (44), we have µ4 > µ2 and
µ4 > θ7. Hence, Φ(n, p, µ)⇔ µ4 ≤ µ ≤ µ3.

We now eliminate c1 from Φ(n, p, µ) ⇔ (p ∈ ( 13
9 , n2) ∧ θ1 < c1 ≤ 0 ∧ µ4 ≤ µ ≤ µ3).

Similar to Case 1.1, we have Φ(n, p, µ) ⇔ (p ∈ ( 13
9 , n2) ∧ θ4 > θ1 ∧ θ5 ≤ 0), T(3, 2) is

proved.
Case 1.3.2: θ1 < c1 ≤ 0 and p ∈ (n1, 13

9 ], p 6= 1. By (43)–(46), we have µ4 ≥ µ2,
(µ3 ≥ θ7 ⇔ c1 ≤ η1), (µ4 ≥ θ7 ⇔ c1 ≤ θ2) and (θ2 > θ1 ⇔ φ3). Hence Φ(n, p, µ) ⇔
max(µ4, θ7) ≤ µ ≤ µ3. This case is further divided into two sub-cases.

Case 1.3.2.1: If c1 ≤ θ2, then µ4 ≥ µ5, and Φ(n, p, µ)⇔ µ4 ≤ µ ≤ µ3. Thus, we need
θ1 < θ2, which yields φ3. Thus, Φ(n, p, µ)⇔ (θ1 < c1 ≤ θ2, φ3, µ4 ≤ µ ≤ µ3).

We now eliminate c1 from Φ(n, p, µ) ⇔ (p ∈ (n1, 13
9 ), p 6= 1, φ3, θ1 < c1 ≤ θ2, µ4 ≤

µ ≤ µ3). Like Case 1.1, we have Φ(n, p, µ) ⇔ (p ∈ (n1, 13
9 ) ∧ p 6= 1 ∧ φ3 ∧ θ4 > θ1 ∧ θ5 ≤

θ2), and T(4, 2) is proved
Case 1.3.2.2: If c1 ≥ θ2, then µ4 ≤ θ7, and Φ(n, p, µ) ⇔ θ7 ≤ µ ≤ µ3. Thus, we

need θ7 ≤ µ3, which yields c1 ≤ η1. By (47), we know η1 > θ1 results in φ3, which yields
θ1 < θ2 < η1. Thus, Φ(n, p, µ)⇔ (θ2 < c1 ≤ min(0, η1), φ3, θ7 ≤ µ ≤ µ3).

We now eliminate c1 from Φ(n, p, µ)⇔ (p ∈ (n1, 13
9 ), p 6= 1, φ3, θ2 < c1 ≤ min(0, η1), θ7 ≤

µ ≤ µ3). θ7 ≤ µ ≤ µ3 is equivalent to θ7 ≤ µ and c1 ≤ θ4. ∃c1(c1 ≤ θ4 ∧ θ2 <
c1 ≤ min(0, η1)) is equivalent to θ4 > θ2. Therefore, in this case, Φ(n, p, µ) ⇔ (p ∈
(n1, 13

9 ) ∧ p 6= 1∧ φ3 ∧ θ7 ≤ µ ∧ θ4 > θ2), and T(4, 3) is proved.
Case 1.4: θ1 < c1 ≤ 0 and p = n1. When p = n1, we have θ1 = θ10, θ2 = θ11, η1 =

η2, s2 = − 1
1024 (33 + 7

√
17)(c1

√
17 − 64n − 9c1)n. Then s2 ≥ 0 ⇔ c1 ≥ θ10. Because
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θ1 < c1 ≤ 0 and p = n1 > 4
9 , we have s3 ≥ 0 ⇔ µ4 ≤ µ ≤ µ3. By (44), we have

µ4 ≥ θ7 ⇔ c1 ≤ θ2.
Case 1.4.1: Similar to Case 1.3.2.1, Φ(n, p, µ) ⇔ (θ1 < c1 ≤ θ2, φ3, µ4 ≤ µ ≤ µ3).

When p = n1, we have µ3 = µ9, µ4 = µ10, φ3 ⇔ n < n3. Thus Φ(n, p, µ) ⇔ (θ10 < c1 ≤
θ11, n < n3, µ10 ≤ µ ≤ µ9).

We now eliminate c1 from Φ(n, p, µ) ⇔ (p = n1, θ10 < c1 ≤ θ11, n < n3, µ10 ≤ µ ≤
µ9). µ10 ≤ µ ≤ µ9 is equivalent to θ14 ≤ c1 ≤ θ13. ∃c1(θ14 ≤ c1 ≤ θ13 ∧ θ10 < c1 ≤ θ11) is
equivalent to θ13 > θ10 and θ14 ≤ θ11. Therefore, in this case Φ(n, p, µ) ⇔ (p = n1 ∧ n <
n3 ∧ θ13 > θ10 ∧ θ14 ≤ θ11), and T(5, 2) is proved.

Case 1.4.2: Similar to Case 1.3.2.2, Φ(n, p, µ) ⇔ (θ2 < c1 ≤ min(0, η1), φ3, µ5 ≤ µ ≤
µ3). When p = n1, we have θ7 = θ16. Thus, Φ(n, p, µ)⇔ (θ11 < c1 ≤ η2, n < n3, θ16 ≤ µ ≤
µ9).

We now eliminate c1 from Φ(n, p, µ)⇔ (p = n1, θ11 < c1 ≤ η2, n < n3, θ16 ≤ µ ≤ µ9).
θ16 ≤ µ ≤ µ9 is equivalent to c1 ≤ θ13 and µ ≥ θ16. ∃c1(c1 ≤ θ13 ∧ θ11 < c1 ≤ η2) is
equivalent to θ13 > θ11. Therefore, in this case, Φ(n, p, µ) ⇔ (p = n1 ∧ n < n3 ∧ θ13 >
θ11 ∧ µ ≥ θ16), and T(5, 3) is proved.

Case 1.5: θ1 < c1 ≤ 0 and p ∈ ( 4
9 , n1). By (42) and (44), we have µ2 > µ3 and

(µ4 ≥ θ7 ⇔ c1 ≤ θ2). Hence Φ(n, p, µ)⇔ max(µ4, θ7) ≤ µ ≤ µ3.
Case 1.5.1: Similar to Case 1.3.2.1, we have Φ(n, p, µ)⇔ (θ1 < c1 ≤ θ2, φ3, µ4 ≤ µ ≤

µ3).
We now eliminate c1 from Φ(n, p, µ) ⇔ (p ∈ ( 4

9 , n1), φ3, θ1 < c1 ≤ θ2, µ4 ≤ µ ≤ µ3).
Like Case 1.3.2.1, we have Φ(n, p, µ)⇔ (p ∈ ( 4

9 , n1) ∧ φ3 ∧ θ4 > θ1 ∧ θ5 ≤ θ2), and T(6, 2)
is proved

Case 1.5.2: Similar to Case 1.3.2.2, we have Φ(n, p, µ)⇔ (θ2 < c1 ≤ η1, φ3, µ5 ≤ µ ≤
µ3).

We now eliminate c1 from Φ(n, p, µ) ⇔ (p ∈ ( 4
9 , n1), φ3, θ2 < c1 ≤ η1, θ7 ≤ µ ≤ µ3).

Like Case 1.3.2.2, we have Φ(n, p, µ)⇔ (p ∈ ( 4
9 , n1) ∧ φ3 ∧ θ7 ≤ µ ∧ θ4 > θ2), and T(6, 3)

is proved.
Case 1.6: θ1 < c1 ≤ 0 and p = 4

9 . When p = 4
9 , we have θ1 = θ9, η1 = η3, θ7 =

θ8, s3 = − 4n
6561 (162n + 25c1)(45n2 + 81nu + 25c1). Then s3 ≥ 0 ⇔ µ ≤ µ13 if c1 ≥ θ9.

By (45), we know µ3 ≥ θ7 ⇔ c1 ≤ η1. And θ9 < η3 ⇔ n = 1. Thus Φ(n, p, µ) ⇔ (θ9 <
c1 ≤ η3, n = 1, θ8 ≤ µ ≤ µ13).

We now eliminate c1 from Φ(n, p, µ) ⇔ (p = 4
9 , θ9 < c1 ≤ η3, n = 1, θ8 ≤ µ ≤ µ13).

θ8 ≤ µ ≤ µ13 is equivalent to c1 ≤ θ15 and µ ≥ θ8. ∃c1(c1 ≤ θ15 ∧ θ9 < c1 ≤ η3) is
equivalent to θ15 > θ9. Therefore, in this case Φ(n, p, µ) ⇔ (p = 4

9 ∧ n = 1 ∧ θ15 >
θ9 ∧ µ ≥ θ8), and T(7, 2) is proved

Case 1.7: θ1 < c1 ≤ 0 and 0 < p < 4
9 .

Case 1.7.1: If we select θ7 ≤ µ ≤ min(µ2, µ3), by (42), we have µ2 > µ3. Thus,
Φ(n, p, µ) ⇔ θ7 ≤ µ ≤ µ3. So, we need θ7 ≤ µ3, which yields c1 ≤ η1. By (47), we know
η1 > θ1 results in φ3, which yields n = 1 with 0 < p < 4

9 . Thus Φ(n, p, µ) ⇔ (θ1 < c1 ≤
η1, n = 1, θ7 ≤ µ ≤ µ3).

We now eliminate c1 from Φ(n, p, µ)⇔ (p ∈ (0, 4
9 ), n = 1, θ1 < c1 ≤ η1, θ7 ≤ µ ≤ µ3).

Like Case 1.3.2.2, we have Φ(n, p, µ)⇔ (p ∈ (0, 4
9 )∧ n = 1∧ θ7 ≤ µ∧ θ4 > θ1), and T(8, 2)

is proved.
Case 1.7.2: If we select max(µ4, θ7) ≤ µ ≤ min(µ1, µ2), by (41), we have µ1 < µ4,

which yields a contradiction.
Case 2: c1 < θ1. From (40), we have µ1 < µ3 in this case, and from (35), Φ(n, p, µ)

simplifies to one case: Φ(n, p, µ) ⇔ θ7 ≤ µ ≤ min(µ1, µ2, µ4), if 0 < p < 4
9 and c1 < θ1.

Since p satisfies 0 < p < 4
9 , we need only consider the following cases.

Case 2.1: c1 < θ1 and 0 < p < 4
9 . By (41), (43) and (44), we have µ1 > µ4, µ2 > µ4 and

(µ4 ≥ θ7 ⇔ c1 ≥ θ2). Then, we need θ2 < θ1, which yields φ3 by (46). Because φ3 means
n = 1 with 0 < p < 4

9 , we have Φ(n, p, µ)⇔ (θ2 ≤ c1 < θ1, n = 1, θ7 ≤ µ ≤ µ4).
We now eliminate c1 from Φ(n, p, µ)⇔ (p ∈ (0, 4

9 ), n = 1, θ2 ≤ c1 < θ1, θ7 ≤ µ ≤ µ4).
θ7 ≤ µ ≤ µ4 is equivalent to c1 ≥ θ5 and µ ≥ θ7. ∃c1(c1 ≥ θ5 ∧ θ2 ≤ c1 < θ1) is equivalent



Entropy 2021, 23, 1593 16 of 18

to θ5 < θ1. Therefore, in this case, Φ(n, p, µ) ⇔ (p ∈ (0, 4
9 ) ∧ n = 1 ∧ θ5 < θ1 ∧ µ ≥ θ7),

and T(8, 3) is proved.
Case 2.2: c1 < θ1 and p = n2. In Case 1.5, we know that θ1 = θ3 with p = n2, and

s2 ≥ 0⇔ c1 ≥ θ3, which yields a contradiction.
Case 2.3: c1 < θ1 and p = n1. In Case 1.6, we know that θ1 = θ10 with p = n1, and

s2 ≥ 0⇔ c1 ≥ θ10, which yields a contradiction.
Case 2.4: c1 < θ1 and p = 4

9 . We have θ1 = θ9, µ2 = µ12, µ3 = µ13 based on p = 4
9 .

Then, we have (s2 ≥ 0 ⇔ µ ≤ µ12) and (s3 ≥ 0 ⇔ µ ≥ µ13 if c1 ≤ θ9). So, we need
µ12 ≥ µ13. By (42), we have µ12 < µ13, which yields a contradiction.

Case 3: c1 = θ1. When c1 = θ1, we have s1 = n(np − n − µ + 2), s2 = n(4p2 −
9p + 4)(np− n− µ + 2) and s3 = −n2(9p− 4)(np− n− µ + 2)2. Thus, s1 ≥ 0 ⇔ µ ≤
2 + n(p− 1) and s3 ≥ 0⇔ (p ≤ 4

9 or µ = 2 + n(p− 1)).
Case 3.1: If µ = 2 + n(p− 1), then s1 = s2 = s3 = 0. Furthermore, p ≥ 1− µ

n ⇔ φ1.
Thus, Φ(n, p, µ)⇔ (c1 = θ1, φ1, φ2), and T(i, 4), i = 1, . . . , 6 are proved.

Case 3.2: If p ≤ 4
9 , then s2 ≥ 0⇔ µ ≤ 2 + n(p− 1). Then, we need 2 + n(p− 1) ≥ µ5,

which yields φ1. And φ1 implies n = 1 with p ≤ 4
9 . Thus, Φ(n, p, µ) ⇔ (c1 = θ1, n =

1,−p ≤ µ− 1 ≤ p), and T(7, 4), T(8, 4) are proved.

4. Conclusions

This paper is an extension of the work [15–17] to the case where the entropy power
involves parameters. The basic idea is to prove entropy power inequalities in a systematic
way. Precisely, the concavity of Rényi entropy power is considered, where the probability
density ut solves the nonlinear heat equation with two parameters p and µ. Our procedure
reduces the proof of the CREP to checking the semi-positiveness of a quadratic form (33)
whose coefficients are polynomials in the parameters n, p, µ. In principle, a necessary and
sufficient condition on parameters n, p, µ for this can be computed with the quantifier
elimination [24]. Some interesting works [26,27] can help to understand our approach in
this paper.

Based on the above method, we give a sufficient condition Φ(n, p, µ) for the CREP,
which extends the parameter’s range of the CREP given by Savaré-Toscani [22]. By
Theorem 3, our results give the necessary and sufficient condition for the CREP under
certain conditions. However, in the general case, Theorem 1 only gives a sufficient condi-
tion for the following reasons: Problem 1 may not be equivalent to Problem 2, and more
constraints may exist.

For future research, it is interesting to see whether the three conjectures about Costa’s
differential entropy studied in [17] can be generalized to this more general case.
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Appendix A. Constraints in (15)

In this appendix, we give the constraints in (15), where uh1,h2 = ∂h1+h2 u
∂h1 xa,t∂

h2 xb,t
.

R1,a,b = 3pu4
1,0 + 3uu2,0u2

1,0 − 5u4
1,0,
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R2,a,b = 3pu4
0,1 + 3uu0,2u2

0,1 − 5u4
0,1,

R3,a,b = 3pu2u1,0u3,0 + u3u4,0 − 3u2u1,0u3,0,

R4,a,b = 3pu2u0,1u3,0 + u3u3,1 − 3u2u0,1u3,0,

R5,a,b = 3pu2u1,0u2,1 + u3u3,1 − 3u2u1,0u2,1,

R6,a,b = 3pu2u0,1u2,1 + u3u2,2 − 3u2u0,1u2,1,

R7,a,b = 3pu2u1,0u1,2 + u3u2,2 − 3u2u1,0u1,2,

R8,a,b = 3pu2u0,1u1,2 + u3u1,3 − 3u2u0,1u1,2,

R9,a,b = 3pu2u1,0u0,3 + u3u1,3 − 3u2u1,0u0,3,

R10,a,b = 3pu2u0,1u0,3 + u3u0,4 − 3u2u0,1u0,3,

R11,a,b = 3pu0,1u3
1,0 + 3uu1,1u2

1,0 − 5u3
1,0u0,1,

R12,a,b = 3pu3
0,1u1,0 + 3uu1,1u2

0,1 − 5u3
0,1u1,0,

R13,a,b = 3pu2
0,1u2

1,0 + 2uu0,1u1,0u1,1 + uu2
1,0u0,2 − 5u2

1,0u2
0,1,

R14,a,b = 3puu2
1,0u2,0 + u2u1,0u3,0 + u2u2

2,0 − 4uu2,0u2
1,0,

R15,a,b = 3puu0,1u1,0u2,0 + u2u0,1u3,0 + u2u1,1u2,0 − 4uu2,0u1,0u0,1,

R16,a,b = 3puu2
1,0u1,1 + u2u1,0u2,1 + u2u1,1u2,0 − 4uu1,1u2

1,0,

R17,a,b = 3puu0,1u1,0u2,0 + u2u1,0u2,1 + u2u1,1u2,0 − 4uu2,0u1,0u0,1,

R18,a,b = 3puu2
0,1u2,0 + u2u0,1u2,1 + u2u0,2u2,0 − 4uu2

0,1u2,0,

R19,a,b = 3puu0,1u1,0u1,1 + u2u0,1u2,1 + u2u2
1,1 − 4uu0,1u1,0u1,1,

R20,a,b = 3puu2
1,0u0,2 + u2u1,0u1,2 + u2u0,2u2,0 − 4uu2

1,0u0,2,

R21,a,b = 3puu0,1u1,0u1,1 + u2u1,0u1,2 + u2u2
1,1 − 4uu0,1u1,0u1,1,

R22,a,b = 3puu2
0,1u1,1 + u2u0,1u1,2 + u2u0,2u1,1 − 4uu1,1u2

0,1,

R23,a,b = 3puu0,1u1,0u0,2 + u2u0,1u1,2 + u2u0,2u1,1 − 4uu0,2u1,0u0,1,

R24,a,b = 3puu0,1u1,0u0,2 + u2u1,0u0,3 + u2u0,2u1,1 − 4uu0,2u1,0u0,1,

R25,a,b = 3puu2
0,1u0,2 + u2u0,1u0,3 + u2u2

0,2 − 4uu0,2u2
0,1,

R26,a,b = 3pu0,1u3
1,0 + 2uu2,0u1,0u0,1 + uu1,1u2

1,0 − 5u3
1,0u0,1,

R27,a,b = 3pu2
0,1u2

1,0 + uu2
0,1u2,0 + 2uu0,1u1,0u1,1 − 5u2

1,0u2
0,1,

R28,a,b = 3pu3
0,1u1,0 + uu1,1u2

0,1 + 2uu0,2u1,0u0,1 − 5u3
0,1u1,0.
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